Discriminative Multiple Kernel Concept Factorization for Data Representation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discriminative concept factorization for data representation

Non-negative matrix factorization (NMF) has become a popular technique for finding low-dimensional representations of data. While the standard NMF can only be performed in the original feature space, one variant of NMF, named concept factorization, can be naturally kernelized and inherits all the strengths of NMF. To make use of label information, we propose a semi-supervised concept this paper...

متن کامل

Kernel Methods for Nonlinear Discriminative Data Analysis

Optimal Component Analysis (OCA) is a linear subspace technique for dimensionality reduction designed to optimize object classification and recognition performance. The linear nature of OCA often limits recognition performance, if the underlying data structure is nonlinear or cluster structures are complex. To address these problems, we investigate a kernel analogue of OCA, which consists of ap...

متن کامل

Discriminative Non-negative Matrix Factorization for Multiple Pitch Estimation

In this paper, we present a supervised method to improve the multiple pitch estimation accuracy of the non-negative matrix factorization (NMF) algorithm. The idea is to extend the sparse NMF framework by incorporating pitch information present in time-aligned musical scores in order to extract features that enforce the separability between pitch labels. We introduce two discriminative criteria ...

متن کامل

Semantic Data Representation for Improving Tensor Factorization

Predicting human activities is important for improving recommender systems or analyzing social relationships among users. Those human activities are usually represented as multi-object relationships (e.g. user’s tagging activities for items or user’s tweeting activities at some locations). Since multi-object relationships are naturally represented as a tensor, tensor factorization is becoming m...

متن کامل

Adaptive Graph via Multiple Kernel Learning for Nonnegative Matrix Factorization

Nonnegative Matrix Factorization (NMF) has been continuously evolving in several areas like pattern recognition and information retrieval methods. It factorizes a matrix into a product of 2 low-rank non-negative matrices that will define parts-based, and linear representation of nonnegative data. Recently, Graph regularized NMF (GrNMF) is proposed to find a compact representation,which uncovers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2020

ISSN: 2169-3536

DOI: 10.1109/access.2020.3025045